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NATTONAT, AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL REPORT R-151

A STUDY OF GUIDANCE TO REFERENCE TRAJECTORIES FOR
LIFTING REENTRY AT SUPERCIRCULAR VELOCITY

By Rodney C. Wingrove
SUMMARY

This report presents an analysis of the guidance of 1lifting vehicles
onto a reference trajectory during atmosphere entry. Various reference
trajectories and various input quantities to govern 1ift variations are
considered. A guldance method is developed which uses the four-state
variables of a trajectory as follows: Velocity is made the independent
variable and the errors in the rate of climb, acceleration, and range
relative to the reference govern the 1lift. A linearized form of the motion
equations is used to show that this method represents a third-order control
system. First- and second-order terms (rate-of-climb and acceleration
inputs) are shown to determine the entry corridor depth by stabilizing
the trajectory so that the vehicle does not skip out of the atmosphere or
does not exceed a specified acceleration limit. The destabilizing effect
that range input (the third-order control term) can have is illustrated
and the results indicate that a low value of range input gain must be used
at the high supercircular velocities while larger values can be used at
lower velocities.

The usable corridor depth and range capability with this guidance
system are presented for a lifting capsule (L/D = 0.5) entering the atmos-
phere at a velocity 4O percent above local circular. The results show an
attainable downrange increment of about 1,000 miles within a 25-mile entry
corridor and 2,000 miles within a 10-mile corridor when a moderate range
input gain is used only at velocities below local circular. The range
increment is increased to about 3,000 miles within a 25-mile corridor and
4,000 miles within a 10-mile corridor when, in addition, a small range
input gain is used above circular velocity.

INTRODUCTION

Current and future space-flight projects require the development of
entry guidance methods applicable to vehicles entering the Earth's atmos-
phere at supercircular velocities. These methods must guide the vehicle
to a predetermined destination and insure that acceleration and heating
limits are not exceeded. Various entry guidance and control methods have
been considered (e.g., refs. 1 through 11). Although these studies present
solutions to the reentry guidance problem, they do not analyze in detail



how the control parameters influence the reentry guidance system. It is
the purpose of this report to demonstrate, by means of control system
analysis techniques, the influence of various conirol parameters upon the
trajectory motion (see also ref. 12). A simple guidance technique based
on a reference trajectory and moderate 1ift variations will be developed
from these factors, and a linearized form of the entry motion equations
will be used to describe mathematically the trajectory dynamics.

These guldance methods will be applied to a vehicle with a maximum
L/D of 0.5 entering the earth's atmosphere at a velocity LO percent above
local satellite velocity. As shown in references, such as 13 and 1k,
entries, beginning at supercircular velocity, require that the 1ift be
controlled to prevent the vehicle from skipping out of the atmosphere or
exceeding a given acceleration limit. Methods for controlling lift to
satisfy these constraints and to reach a desired landing site will be con-
sidered. The effect of the reference trajectory on acceleration and
skip-out boundaries and also on meximum range capability will be
investigated.

NOTATTION
A horizontal acceleration, g units
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A resultant acceleration, A (1 + <ﬁi>o, g units
Cp drag coefficient, S

(1/2)pVZs
D drag force, 1b
g local gravitational acceleration, ft/sec2
h altitude, ft
h rate of climb, fps
X1, Ko, Ks gain constants
L 1ift force, 1b
m mass of vehicle, slugs
r distance from planet center, Tt
R downrange value along local great circle route in space,
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surface area on which drag coefficient is based, ft2

circ7mferential velocity component normal to radius vector,
ft/sec

u u
circular orbital velocity’A/gr

dimensionless ratio,

resultant velocity, ft/sec
welght of vehiele, 1b
dimensionless function of U determined by equation (1) and

Cps
appropriate boundary conditions, pu 52{>4é;
m

first derivative with respect to T
second derivative with respect to 1
1

atmospheric density decay parameter, it

flight-path angle relative to local horizontal; positive for
climb

atmosphere density, slugs/cu £t
roll angle
lateral deflection angle

damping factor

cl

natural frequency, radians/unit of

Subscripts

respect to reference trajectory
initial value
final value

value at ¢ =0



METHOD OF ANALYSIS

In this section the motion equations programmed on the computer will
first be stated. Then a linear form of these motlon equations will be
developed toc 1llustrate control factors that influence the system response.
These control factors will then be considered in choosing a suitable method

for gulding to a reference trajectory.

Trajectory Equations

The analysis is based on analog computer solutions of Chapman's
approximate equation of entry motions (ref. 15). This simplified equation
aids in the recognition of factors important to trajectory control and
allows simplified computer programming. Chapman's basic equation as used
in this study is

2 - 72
®z 142, 2 1 -1 LNBr (/D) _ o, (1)
duZ w§du u2 T2Z a

A Dblock diagram of the analog computer set-up of this equation is
i1llustrated in figure 1.

The initial conditions for solution of equation (l) on the analog
computer are the initial entry conditions as follows:

1—11 _ Vl cOos 71 (2)
NENY
Zl = ————Al——- (3)
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1

The various quantities used by the control system are shown in Ffigure 1
and are expressed as functions of Z, Z', and W as follows:

Rate of climb

b= /%(az’ - 7), fps (5)
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Horizontal acceleration

A= -+Br W2, g units (6)
Downrange
uy

Re_ T f
5280 N Br -'l—lz

% ad, statute miles (7

The computation of crossrange normal to the plane of the trajectory was
taken from Siye's approximation (ref. 16) as follows:

uL
Crossrange = ——— Jf $1n ¥ 55, statute miles (8)
5280 JBr Jis ’
where
ay 1/ L .
== = -=(=2) sin
w . T <D>O ® (9)

These equations apply to any planetary atmosphere. In this study
the particular constants for the earth are ./Br = 30, Jgr = 25,800 fps,
and r = 2.215x107 £t (4,000 miles).

The accuracy of Chapman's 7 function method has been established
by comparison with a more exact numerical calculation (refs. 2, 13, 15).
The limitations of the Z function method are described in detail in
reference 15, but are outlined here for convenlence:

1. Drag during entry must be large enough that dr/r <L du/u. For
a flrst approximation, this is the case for reentry bodies at
altitudes up to approximately 300,000 feet.

2. Atmosphere density varies exponentially with altitude.

3. The entry is sufficiently shallow that cos y =1, sin y = 73
L/D tan ¥ and tan®y can be disregarded compared with unity.

4. The earth is cylindrical and nonrotating. (The "flat earth”
approximation has been shown in reference 16 to be very good up
to 1,000 miles crossrange.)

5. Vehicle m/CDS is a constant. These results therefore apply to
those vehicle configurations in which there are essentially no
drag changes with 1ift, as in the case where roll angle is used
to control the component of normal force in the vertical plane.



ILinearized Entry Equations

Equation (1) is nonlinear and therefore does not allow the use of
standard control system analysis techniques. To use linear analysis
techniques and obtain an approximate description of the entry trajectory
motions, a linearized trajectory equation was derived from the Chapman
equation. This derivation is presented in the appendix. The linearized
equation will be used throughout this report to describe, in an approximate
fashion, the effect of various control quantities on the trajectory motions.
The llnearlzed equation, taken from the appendix, corresponding to equa-
tion (1) is:

Br(1 - w2) A = ~J/Br A(L/D)
2 —
u Aref u
The A terms represent linear deviations from the reference trajectory.

This linear equation can be used to aid in the recognition of factors
important in trajectory control. The following simplified sketch illus-
trates these factors. The equation of motion i3 seen to be a second-order-
differential equation in either altitude, temperature, or acceleration

Jﬁ_ l - u2ﬁ

)
1
bl
/
1 1 N Br T2 1
Lift —_— e S . 8 . A%ef s .
variation * : :
Rate of climb Altitude Range
acceleration rate acceleration
temperature rate temperature

along the trajectory. (Temperature is not used for the control systems
considered 1in this report (see ref. 1).) It is important to examine the
loops 1nherent in the motion equation shown in the sketch. The upper loop,
JB? (1 - u2)/Aref, corresponds to the spring constant of the second-order
differential equation, and, therefore, it determines the natural frequency
of the trajectory oscillations This loop is stabillizing when velocity,

T, is less than 1 (local circular velocity), but it is destabilizing when
velocity is greater than 1. The lower loop, l/u is a first-order damping
term that adds damping to the trajectory oscillations.
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This simplified representation of the dynamics gives some insight
into the terms a 1ift control system should incorporate. For instance,
1ift variatlon controlled by range measurements represents a third-order
function with respect to velocity. It can be reasoned that this system
like any other classical third-order system of control, needs first- and
second-order feedback terms for good dynamic response. The first-order
term in this case can be represented by the rate of change of altitude,
acceleration, or temperature and the second-order term can be represented
by the value of altitude, acceleration, or temperature. It appears that
simple entry control techniques can be conceived from these system dynamics
As an example, the control technique described in the following section
will be used in this report to illustrate these factors.

Control Method

The control technique used in this report is the methcod of guiding
to a reference trajectory. As pointed out previously, the target motion
is described by the four-state variables, velocity, u, rate of change of
altitude, h, acceleration, A, and range, R. In this investigation, veloc-
ity, U, is the independent variable, and the errors in Hh, A, and R away
from the reference trajectory are used to govern 1ift in the following
manner:

L/D = (L/D)per + Kilh + KoOA + KalR

where (L/D)per 1s the lift-drag ratio function used to generate the
reference trajectory, and the error gquantities Ah, M, and AR are the
deviations of the measured variables from their calculated values on the
reference trajectory at the same velocity, u. Figure 2 is a block diagram
which illustrates this control method. It is important to note from the
previous section that this control method uses the difference in range
from that of the reference trajectory as the third-order feedback term,
with the errors in acceleration and in rate of climb used as second- and
first-order feedback terms.

The reference trajectories in this report are obtained by the
following L/D control function:

(L/D)ref = Kiﬁref

The choice of this particular L/D function to describe the reference
trajectory will be discussed fully in the text; this function simplifies
the full control equation to:

L/D = Kih + KoMA + KadR
In subsequent sections of this report the trajectory dynamics that result

from control of L/D by various combinations of the three terms in this
equation will be comnsidered in detail.



Simulation Details

Equation (1) describes the reentry trajectory in terms of the
independent variable U Iinstead of the more conventional independent
variable t (time). Since an electronic analog computer was used to solve
the trajectory equation, it was necessary to define a relationship between
the rate of integration of the computer and the independent variable du.
An integration rate was chosen in which one second was equal to a du of
-0.1. The initial conditions used were T = 1.4 and Z = 0.004, corre-
sponding to an entrance velocity of about 36,000 fps and an initial
acceleration of 0.17g. The L/D limits for the vehicle were chosen as

+0.5.

To obtain the state variable of a particular reference trajectory,
a second solution of equation (l) was run simulitaneously with the reference
entrance conditions and a reference L/D program. Hence, during the
simulated run, the reference value of a given feedback signal was availl-
able for comparison with the actual value, thereby giving the error signal
to be used in feedback control.

RESULTS AND DISCUSSION

Chapman (ref. 13) has shown that a vehicle returning to the Earth
at supercircular velocity must be guided into a safe entry corridor.
Figure 3 dillustrates the corridor depth which is the distance between the
conlc perigee of the overshoot boundary (beyond which the vehicle will
skip out of the atmosphere) and the undershoot boundary (beyond which the
vehicle will exceed its specified acceleration 1limit). An alternate way
to describe this safe entry corridor is in terms of the initial entrance
angles for the two boundary trajectories. In this study the initial
entrance angle is used to specify the trajectory.

The use of first- and second-order inputs (h, and A) to comtrol the
trajectory over a satisfactory corridor depth will first be discussed.
Then the effect of third-order range inputs and the manner in which they
should be employed will be discussed. Maximum values of downrange and
crossrange available when the reference trajectory control method is used

will be shown.

Trajectory Stabilization

Trajectory stabilization is here defined as the damping of wvehicle
motion about a specified design trajectory. It should be noted that the
limits of permissible trajectory oscillation were established as those
points at which the vehicle will either skip back out of the atmosphere
(A = -0.05g) or exceed a given acceleration limit (A = -10g in most given

examples).



Rate damping.- The control function considered for rate damping of
the entry trajectory is

L/D = Kih

Figure 4 illustrates typical reentry trajectories in which L/D is
controlled as a function of the rate of climb. The plot of acceleration
versus velocity (fig. 4(a)) was obtained from the solution of eguation (1).
The corresponding range, commend L/D, and altitude variations are pre-
sented in figures 4(b), 4(c), and 4(d). In the computation of altitude a
drag loading W/CDS of 48 psf has been used.

This figure indicates the entrance angle limits within which a safe
entry can be made. An entrance angle of -3.97° will cause the vehicle to
skip out of the atmosphere. This skip-out entrance angle is considerably
greater than the skip-out entrance angle of 7y = -2.2°, which results
when L/D is held constant at -0.5. The steepest possible entrance angle
(y = -6.0° in the figure) is determined by the meximum acceleration limit
of -10g. This realistic acceleration 1imit for humans (ref. 17) has been
used in this report in defining usable corridor depths.

The trajectories illustrated in figure 4 have a given value of h
feedback gain, Kj. Control galn affects the entrance angle limits as
shown in figure 5. It should be noted that the entrance angle is plotted
to a nonlinear scale so that corridor depth in miles may be obtained by
linear interpolation. It is seen that with zero feedback gain, and thus
L/D = 0, there is an available corridor depth of about 8 miles. With
infinite feedback gain (i.e., 1L/D = +0.5 when h 1is negative; L/D = -0.5
when h is positive), the available corridor depth is about 30 miles out
of 40 miles available to the vehicle if controlled in an optimum manner.

As mentioned previously the design reference trajectories are for
the L/D function proportional to rate of climb (i.e., L/Dref = Klﬁref).
Five such reference trajectories which differ only in initial entrance
angles are shown in figure 6; the rate-of-climb gain, K, is -0.001/fps.
It is seen in figure 6 that L/D is maximum during the initial portion
of the trajectory and the L/D varles to stabilize the trajectory. Near
the end of the trajectory the L/D 1is about one-half the maximum positive
value resulting in a trajectory near the middle of the vehicle's subcircular
maneuvering capability.

Control system with acceleration inputs.- The use of acceleration
error in controlling L/D was investigated for the reference trajectories
of figure 6. The control function for L/D was

L/D = (L/D)per + KolA

where AA is the difference between the actual acceleration and the
reference trajectory acceleration at a given velocity, and (L/D)ref is
the reference L/D value at a given velocity along the trajectory.
Figure 7 illustrates the effect of Kz on the acceleration error for a
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typical controlled trajectory. The actual acceleration is seen to
oscillate about the reference value. The characteristics of the motion
resulting from L/D correction as a function of acceleration errors can
be approximated by linearized analysis (appendix) as follows:

Damping

radians
unit of U

2buy = 5,

Natural frequency

1 -%° dd -
2 ~ 900 -1 radians
“n 9 < > < it of 4

This linear analysis does not take account of the L/D = £0.5 limit that
is imposed; however, for small oscillations about the reference trajectory,
and for a finite value of Ky, the linearized equation gives a good
description of the motion (see appendix). From the linear analysis the
acceleration feedback term is shown to be analogous to a spring restoring
term in a classical second-order system. As shown in figure 7, the fre-
guency of oscillation increases with the gain, Kp. The oscillation fre-
quency shown in this figure for trajectory with no acceleration control

(Kz = 0) is the inherent natural frequency of entry motion and can be
predicted from the linearized equations.

The use of acceleration error in controlling to reference trajectories
4 and 2 is shown in figures 8 and 9, respectively. Control to trajectory
4 (fig. 8) keeps the vehicle within the atmosphere for any entrance angle
steeper than the -3.63° skip-out limit. In contrast, acceleration error
control to trajectory 2 (fig. 9) results in skip-out with entrance angles
steeper than about -L4.4°. TFor trajectory 2 there is only a small range
of entrance angles (from -3.6° to -4.4°) for which the controlled tra-
Jectory will not skip-out. There is skip-out at steeper entrance angles
because this design trajectory has a low acceleration profile. In other
words, with a controlled trajectory which passes up through this design
trajectory there i1s little margin between the design trajectory acceler-
ation and zerc acceleration at which the vehicle skips out.

The corridor limits with each of the five reference trajectories are
shown in figure 10 as a function of peak acceleration. These corridor
limits are compared with the idealized corridor limits attainable with a
vehicle of L/D = *0.5 capability. The entrance angle at which skip-out
will occur when controlling to each of the various design trajectories is
also shown in this figure. Two values of feedback gain, Ko = =~ and
Ko = -0.33/g were investigated. With infinite feedback gain, (fig. 10(a)),
the vehicle could be controlled to trajectories 4 and 5, and remain within
the atmosphere for a wide range of entrance angles. TFor trajectories 3
and 2 there is only a small range of entrance angles for which the vehicle
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would stay within the atmosphere; and with trajectory 1 it would remain
in the atmosphere only at the design entrance angle.

With the smaller feedback gain (fig. 10(b)), the entrance angle limits
are small for trajectories 3 and 2, and again, for reference trajectory 1,
the vehicle would stay within the atmosphere only at the design entrance
angle.

1t 1s apparent that control to a reference trajectory with
acceleration error alone controlling L/D is not satisfactory because of
the oscilllatory nature of the controlled trajectory and the rather limited
range of possible entrance angles for some reference trajectories.

addition of rate-of -climb 1nputs might damp undesired oscillations and
thus provide smoother control of the trajectory. The control of L/D by
acceleration in combination with rate of climb was used in the following
manner:

L/D = (L/D)per + Ki4h + KolA

Figure 11 illustrates the results for this control system. It is
particularly evident in this figure that rate of climb damps the trajec-
tory. With rate-of-climb feedback gain on the order of —0.00l/fps, the
trajectory motion is damped, with a small overshoot, by the time the
vehicle has reached circular velocity (T = 1).

Again, the characteristics of this motlon can be approximated by the
linearized analysis in the appendix.

Damping

-25,800 K1, rédians

o) =
Swn nit of u

el

Natural frequency

2
w2 = 900 <1 -T2 > < radians >
Ao it of ©W

As an example, if wvalues of Kj = -0.00l/fps, Ko = -O.33/g, and
U = 1 are inserted in the simplified expressions, the computed damping is
£ = 0.78. A comparison of this computed ¢ with the corresponding curve
in figure 11 shows good agreement. Thus it is felt that the linearized
expressions of the appendix not only allow a qualitative consideration of
the trajectory dynamics, but they also give a gquantitative description of
certain aspects of the trajectory dynamics.



v AR

12

The use of combined acceleration and rate-of-climb inputs was
investigated with each of the five reference trajectories for entrance
angles within the corridor. Typical results for the control to reference
trajectory 2 is shown in figure 12. With the extreme entrance angles .
illustrated, the controlled response of the vehicle is such that it is
damped onto the design trajectory by the time the vehicle's speed is
below circular velocity.

The corridor limits with combined 24h and M  control to each of the
five design trajectories are illustrated in figure 13, as a function of
the peak acceleration. As in the previous case these corridor limits are
compared with the idealized corridor limits attainable with a vehicle of
L/D = *0.5 capability. The entrance angle at which skip-out will occur
when controlling to each of the various design trajectories is also shown
in this figure. There is a trend in these data for the corridor depth to
be narrower for the shallower design trajectories. For example, the 10g
corridor depth of trajectory 1 is about 33 miles compared with 37 miles

for trajectory 5.

In figure 14 is a comparison of the usable corridor depths as a
function of the allowable peak acceleration for the control combinaticns
that have been discussed thus far. These data are for the control gain
values that give maximum corridor depth. Acceleration inputs slone allow
use of almost all the available corridor depth for maximum acceleration
limits above about 7g. For acceleration design limits below 7g, the
addition of rate of climb adds to the available corridor depth. Using
rate of climb results in an available corridor depth of about 10 miles
less than the maximum available, independent of the acceleration limit.
In addition to these considerations of corridor depth, it should be
restated that only with the combined rate-of-climb and acceleration inputs
will the controlled trajectory damp onto a design reference trajectory
over a wide range of entrance conditions.

Range Control

The full L/D control equation, which includes range input, is the
following:

L/D = (L/D)per + Kaldh + KoM + K3/AR

The range error term, AR, is the difference between actual range to go
and the reference range to go as a function of the velocity along the
trajectory. By driving this error to zero at the end of the trajectory
the vehicle will reach the desired destination. The terms, KiAh and KoA4,
are identical to those considered in the previous sectlon.

Effect of gains.- The effect of range input gain, Kz, is shown in
figure 15 for a given initial range error. The use of too small an input
gain will not eliminate the range error by the end of the trajectory.
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On the other hand, too large a range input gain will overcontrol the
vehicle and cause it to gkip out, as illustrated in figure 15 for

Ks = 0.0l/mile. The choice of a proper degree of range control is a
compromise between these two effects.

The effect of the other feedback gains (Xi and Ko) on range control
is shown in figure 16. As pointed out previously, with range input the
control of L/D is essentially a third-order system. As with any third-
order control system, it was found that including the two inner loop terms
(i.e., OB and AA) allows a higher outer loop gain for tight control. The
manner in which the values of Xi;, Kz, and Kz will shape the control system
response is shown in figures 15 and 16.

In order to gain a better understanding of these effects, the
linearized expression for the trajectory motions can be used. From the
appendix the linearized motion equation at local points along the trajec-
tory can be obtained in the following manner for the control quantities
considered herein:

— 8 =
s3+<;L_-—25,8OOK1>s2+9OO<—1-;—u-K2>s+3—'6—>%K3=O
U Arer ref
This is a linear third-order equation and the standard methods for ana-
lyzing this type of equation can be used to gain insight into the control
dynamics. One simple approach in looking at the dymamics is to consider
the highest values of range input gain (Ksz) that can be used without
causing the motion to become unstable. The stability criterion (i.e.,
Routh's method) is that the system will be unstable when

<1A—;‘—13 - K2> <% - 25,800 K1>
Xa > Tel A?ef

4000 T

The above expression can be used to determine the upper limit on Ks
and can be used to observe the qualitative interaction of Ki, Kz, Kz, and
U on trajectory stability. The addition of Ky in the term,

1 - @2 >
=% K
< A%ef

provides a stable response above circular veloclty. Increasing the
magnitude of Kj and Ko will allow the upper 1limit on Kz to increase
and it is important to note that the upper limit on Kz will increase as
U decreases.

To maximize the available range capability and drive the range error
to zero at the end of the trajectory, it is desirable to have as large a
value of range input gain K5 and still maintain a margin of system
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stability. From stabllity considerations this value of gain must be low
at high velocities (i.e., U > 1) and can only be increased at lower
velocities (i.e., u< 1).

Range limits.- The effect of the range input, KsAR, to the control
system will become more pronounced as the value of range error, AR, at
entrance is increased. This is illustrated in figure 17 with reference
trajectory 3 for a constant input gain Kz and for various values of
initial range error. A skip-out is shown for an initial range error of
175 miles. This skip-out is due to the high value of range input Kz/R
causing an L/D command which overpowers the trajectory control terms,
Kiéh and KoAA. Diving below the design trajectory, in order to shorten
range, lncurs the hazard of exceeding the acceleration limit as illustrated
in figure 17. An initial range-to-go value of about 400 miles less than
the reference range to go can be seen to call for deceleration values

greater than 9g.

For a constant gain control system, the position along the trajectory
at which the range input is commenced will alter the permissible initial
range errors. Figure 18 presents the initial range error limits as a
function of the velocity at which the range input term is added to the
trajectory control terms. As mentioned above, when range input is added
at supercircular velocities, the range error is limited by the skip-out
and deceleration limits. At a speed just below satellite velocity, the
vehicle cannot skip out and the maximum L/D available can be used for

range control.

These data in figure 18 are for reference trajectory 3. The range
increment between the maximum and minimum initial range error limits from
figure 18 is compared in figure 19 with those permissible when reference
trajectories 1, 2, and L4 are used. The greatest range is obtained with
the shallow entrance trajectory (No. 1) and is achieved when the constant
gain range error is added to the control system at just below circular
velocity. With trajectory U4 there is very little change in range capabil-
ity regardless of the velocity at which range control is started because
of the steeper descent and correspondingly shorter total range traveled.
From these data for constant range control gains, it is inferred that a
greater degree of range control is possible for shallow entrance

trajectories.

The maximum downrange limit considered in this report is for the
trajectory remaining within the "sensible atmosphere," usually referred
to as a "direct descent" entry (refs. 18 and 19). With this limit, the
maximum achievable range becomes a function of the minimum allowable
acceleration which the vehicle encounters during entry. The maximum
range limit for "direct descent"” entries can be approximated from equi-
librium glide at maximum L/D as shown in figure 20. The acceleration
along this trajectory can be substituted into the general range equation

R =L fulﬁ__dﬁ (10)
5280 Ju, A
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to give the approximate maximum range

_ z(1/D) 1, (1 -WAHA - W)
fmax = 5580 [1 t T ) (e ]

(11)

This range value i1s strongly affected by the minimum acceleration the
vehicle will encounter. For example, the maximum range is 9,300 miles
for a minimum acceleration of -0.05g (hpsx ® 290,000 £t), but only u4,700
miles for -0.5g (hpax ® 250,000 £t). This maximum range is compared in
figure 21 with the maximum range obtainable with the various reference
trajectories using constant gain range control and keeping within

Amin = -0.05g. The velocity at which range control is started for each of
the trajectories corresponds to those values shown in figure 19 to give
maximum range. Maximum ranges are between 3,000 miles (for trajectory k)
and 7,000 miles (for trajectory 1) whereas 9,300 miles range could con-
ceivably be obtained near equilibrium glide. It will be noted that
practical maximum range decreases with steeper entrance angles because a
large amount of vehicle kinetic energy is lost during the initial steep
dive into the atmosphere.

The minimum range obtainable during entry is primarily a function of
the allowable acceleration limit. The absolute minimum range for constant
acceleration can be obtained from equation (10) as

- 2 =.2
R - _r <U-2 L 12
min 5280 2Amax (12)

From the initial velocity of Ty = 1.4, the absolute minimum range is
about 40O miles for a -10g constant acceleration and 800 miles for a
constant -5g acceleration. Actual trajectories are not characterized

by a constant acceleration value, but the aforementioned minimum range
equation gives an indication of the absolute limits to be expected. This
absolute minimum range is compared in figure 22 with the minimum ranges
obtained for the various design trajectories. The minimum ranges obtained
are from 1,000 to 1,500 miles for trajectory 4 and from 2,000 to 5,500

miles for trajectory 1, compared to an absolute wminimum range limit of
about 400 miles.

As pointed out previously, stability considerations dictate that
the range gain should be low at the higher velocities and high at lower
velocities. To obtain more of the avallable range during entry, a two-
step range gain was considered in the following manner:

L/D = (L/D)per + Kilh + KplA

+ KaOR Ks = O when

o
Vv
l_l

+I<31AR -K-S'

It

Owhen W< 1
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The subcircular range term 1s the same as that shown previously.
The supercircular range term, Kg'AR, was investigated for both a small
gain constant (Ks!') and an upper limit on (Ks'AR) so that the range term
would not override the other terms and cause the vehicle to skip out.
Figure 23 illustrates the control for maximum range with and without the
two-step range gain. A value of Kg' = 0.000B/mile and an upper limit on
the range term of Kz'AR = 0.1 for U above 0.98 were found to be satis-
factory with this trajectory. This two-step control-gain system extends
the maximum range from 4,500 miles to 5,800 miles. To get this range
extension, the trajectory is flown closer to the skip-out boundary during
the supercircular portion with no increase in the maximum peak altitude.

The minimum range is presented in figure 24 both with and without
the two-step range gain. The minimum range is reduced from about 2,100
miles to 1,200 miles by the two-step system. This change in minimum range
wasg achieved by flying a profile of higher acceleration at supercircular
velocity with no marked increase in the maximum value of acceleration.

The results for trajectory 2 shown in figure 25 illustrate the range
capablility that can be obtained in this manner. The two-step system
provides a 500- to 2,000-mile reduction in minimum range. Futhermore,
there is a large increase in maximum range for the small entry angles,
but comparison with the idealized maximum range shows that the full capa-
bility is not achieved. The reason the ideal range is not obtained is
that the control becomes sensitive near the ideal trajectory because of
the proximity of the skip-out region. About 6 miles of corridor depth
is lost by using the added range control term for range extension.

The range capability added by the two-step control gain system for
trajectories 3 and 4 is very similar to that shown in figure 25 for tra-
Jectory 2. Two-step gain control was investigated for trajectory 1, but
since this trajectory skips up to the edge of the atmosphere, it is very
sensitive to control during the initial dive into the atmosphere. Because
of this sensitivity problem, the second range control term (Ks "AR) was not
used with trajectory 1.

Crossrange capability.- In figure 26, the maximum crossrange
capability is shown as a function of the velocity at which control is
started for the various reference trajectories. In computing the maximum
crossrange capabllity, it was assumed that the vehicle was trimmed at a
constant value of (L/D), = 0.5 throughout the trajectory. The vehicle
was rolled so the total 1ift vector was positioned to yield maximum cross-
range capability while providing the 1ift reguired for downrange control.
The roll command was made according to the following equation:

-1 desirquiL/D)
trim (L/D)O

command ¢ = tcos
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The curves in figure 26 illustrate the important fact that for maximum
crossrange, lateral control must start near the beginning of the trajectory.
For entry at supercircular velocity, trajectory 1 which has the largest
downrange capability also has the largest crossrange capability. At
U = 1 all the design trajectories have about 200 miles of available cross-
range which, as Slye (ref. 16) has shown, is typical of a vehicle with an
L/D = 0.5 entering the atmosphere from circular velocity.

Attainable ground area.- The attainable ground area for two different
corridors, and when the vehicle is controlled to design trajectory 2, is
shown in figures 27(a) and 27(b). The conics in these figures represent
the vacuum trajectories for the extreme entry angles at the boundaries of
the corridor. The shaded area represents the ground area that can be
reached from any entry angle within the corridor. In figure 27(a) with
the 25-mile usable corridor for v; between -4° and -6°, the attainable
ground area is about 2,200 miles of downrange and *250 to *350 miles of
crossrange. In figure 27(b) it can be seen that for an ll-mile corridor
between 71 = -4© and -5°, there are 3,900 miles of downrange and *250 to
+550 miles of crossrange available. The maximum acceleration encountered
with the 25-mile corridor is 10g as compared with about 6g for the 11-
mile corridor. These data illustrate the trade off between the specified
corridor depth and attainable ground area; the largest ground area can be
attained if the entry can be made within the smallest specified corridor.

A comparison of the available downrange capabilities of the various
trajectories with given values of corridor depth is shown in figure 28.
These data represent the widest variation between maximum and minimum
range for combinations of entrance angles corresponding to the given values
of corridor depth. Trajectory 1 is seen to give limited range capability
because, as stated previously, it skips up to the edge of the atmosphere
and is therefore sensitive to range control. Trajectories 2, 3, and 4
with range control only below circular velocity give about 200 miles of
range capability for a 35-mile corridor depth and about 1,500 to 2,500
miles for the minimum corridor depths. The use of a two-step range input
above circular velocity gives about 1,500 to 3,000 miles of additional
range capability.

SUMMARY OF RESULTS

This report has shown that the trajectory motion with lift-drag ratio
controlled during entry can be represented as a third-order function with
respect to velocity. The first- and second-order feedback terms determine
the vehicle's usable corridor depth for entries from supercircular velocity.
These terms damp the vehicle's trajectory in such a way that the vehicle
does not skip out of the atmosphere or exceed specified acceleration
limits. Range input, the third-order term of the control system, must
have a high value of feedback gain at velocities less than local circular
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velocity to insure that range errors are zero by the end of the trajectory,
and the range feedback gain must have a low value at higher velocities to
insure a stable response.

The study of an L/D = 0.5 vehicle entering at velocities 40 percent
above local circular with a maximum acceleration of 10g indicates that
using only constant gain rate-of -climb measurements for controlling L/D
results in a usable entry corridor of 30 miles out of the 40 miles avail-
able. Using only constant gain acceleration error (about a reference
trajectory) inputs gives a maximum usable corridor of about 38 miles, but
the actual trajectory oscillates about the reference trajectory. Combining
the acceleration and rate-of-climb inputs results in a maximum usable
corridor depth of about 37 miles and the vehicle is on the reference
trajectory by the time it is near circular velocity.

The attainable downrange increment is about 1,000 miles within a
25-mile corridor depth and 2,000 miles within a 10-mile corridor depth if
the constant range input gain is used only at velocities below circular.
In addition, if a low value of range input gain is used above circular
veloclty, the attainable downrange increment is sbout 3,000 miles within
a 25-mile corridor depth and 4,000 miles within a 10-mile corridor depth.

Design reference trajectories that skip up to the edge of the
atmosphere in order to extend the range have sensitive control problems
and decrease usable corridor depth. Design reference trajectories which
stay well within the atmosphere provide larger usable corridor depths.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., Aug. 2k, 1962
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APPENDIX A

LINEARTZED EQUATIONS FOR MOTION ABOUT A REFERENCE TRAJECTORY

An approximate form of the trajectory dynamics about a reference
trajectory can be obtained by a linearization of the following Chapman
equation from reference 15.

T2 T2Z

Z”-?'I_l.—'+£' l'ﬁz—-mﬁ(L/D) (A1)

By letting A2MZ'', AZ', and A7 denote the changes away from a reference
trajectory, we can write equation (Al) in the following manner:

_z;ef + A7 . Zref + 02

Zide + 021"
( ref ) ~ T2

1 - Zper - AZ> _ _ JBr (1/p)
7, T

T2 (Zyper + A7) \Lref -

(A2)

Now linearizing this equation by neglecting AZ2 compared to Z%ef
changes the equation to

t _ 32
VAL LA Gt
u u U=Z%ef

Zref 1-u8 A Br (L/D)
- gty lrer (11 u>zref _ JPBr (1/D)

-z o 3 L -
re T U2 U2Z3.p T

(A3)

This is a linear differential equation in AZ with variable coefficients.
The left side of the equation contains the "characteristic equation" which
determines dynamics of the trajectory about the reference trajectory
described on the right The right side of the equation with

L/D = (L/D)ref 1s identical to the Chapman equation for the reference
trajectory and can be set equal to zero.

Since -Br TZpef = Arer and the influence of 1/82 is small during
most of the trajectory compared with (1 - T2)/T2Z2 the equation becomes:
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AZ”_u MAZ__\/_B; <%> (AL)

ef u

This equation can be written in standard operator notation as follows:
(note that 4T in eq. (A1) is negative during solution of an entry

trajectory):

[52+%S+B(l'u2i| -\/—B_l: <> (A5)

A%ef

The dynamics described by adding various types of control input,
A(L/D), will be discussed in the following sections.

CONSTANT L/D

With the L/D held constant during an entry trajectory there is no
A(L/D) introduced so that the characteristic equation becomes:

82+%s+—i———6r1'ﬁ2)=0
u

A%ef

The frequency and damping at local points along the trajectory from this
second-order equation are approximately:

Damping

2fwy = %, radians/unit of U

o

Natural frequency

_ =2
wy2 = QEL;—~¥E@1, (radians/unit of )2
A%ef

The important features to be noted here are that the damping (28wy) is
small and increases with decreasing velocity, and that spring constant
(wp2) is positive, and thus the system is stable, when U < 1.

Figure 29 presents typical dynamics of a vehicle flown at constant
L/D for a subcircular trajectory. As shown in figure 29(a) the vehicle
tends to oscillate around an equilibrium glide trajectory. The dynamics
of the vehicle away from equilibrium glide trajectory (fig. 29(b)) as
calculated by Chapman equation (A1) and as calculated by the linear
approximation of equation (AL) are in fairly good agreement. The agree-
ment becomes worse, however, as the trajectory gets farther away from the
reference so that AZ% is no longer small compared with Z2Sef .
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A reference equilibrium glide trajectory can be approximated by
simplifying the right side of equation (A3) which mathematically describes
the reference trajectory. In reference 15 it is noted that, since for
equilibrium glide Z}lie and Z) ¢ are essentially zero and Zyper 1is much
smaller than (1 - T2)/Zpef, the right side of the equation reduces to the
well-known approximation for equilibrium glide:

1 -3

-Apef ®
(L/D)ref

For the particular case of an equilibrium glide reference trajectory this
value of Apef can be substituted into the characteristic equation sc
that:

Damping

y radians/unit of T

<l

28wy =

Natural frequency

2
wp2 ™ Pr(L Eg , (radians/unit of T)2
- T

This shows the interesting fact that during a constant L/D entry,
the damping (26w,) of these long-term motions is independent of L/D but
the natural frequency of oscillation with respect to velocity is directly
proportiocnal to L/D.

RATE-OF -CLIMB CONTROL

The Z function method (ref. 15) expresses rate of climb as:
h = Jg/B (Wz2' - 2), fps. The use of rate-of-climb errors with respect
to the reference trajectory in controlling L/D is considered in the
following manner:

A(L/D) = Kabh = Ky Jg/B (T 42" - £2)

The A(L/D) can be substituted into equation (AL) so that

s + <% - K1 J§?> S + Br(lz- o) | Kl_jgr =0

Aver u

and at each local point along the trajectory, the damping and natural
frequency can be approximated by:
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Damping

o2lwy ® = - Ky /BT, radians/unit of

sl

Natural frequency

- g2 SN
Br(lz w) l__gr, (radians/unit of )%
Aver u

2 =
Wn

From this approximate solution the important feature of control by
rate-of -climb errors can be noted; the gain X; must be negative in order
to damp the trajectory motion. In turn, this will increase the natural
frequency. This increase in wp2 is very slight, however, for gains on
the order of those to give near critical damping (¢ = 1) so that rate
of climb is essentially a first-order feedback quantity, affecting the

damping only.
ACCELERATION CONTROL

The 2 function method (ref. 15) expresses acceleration as
A= -Pr T2, g units. The use of acceleration errors with respect to
the reference trajectory in controlling L/D is considered in the

following manner:
A(L/D) = KoM = Ko fBr T AZ
The A(L/D) can be substituted into equation (AL) so that,
2 1 1l - u=
5 +=s+Br<~—————-K2>=O
u AZer

and at each local point along the trajectory the damping and frequency can
be approximated by:

Damping

l_l

ofwp = =, radians/unit of T

o

Frequency

w2 = Br lﬁéi@ﬁ - K%>, (radisns/unit of T)%
Afer
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From this approximate solution the important features of control by
acceleration errors can be noted: a negative value of gain Ky will
increase the natural frequency (wn2) and will not affect the damping
(2¢wy) along the trajectory.

RANGE CONTROL
The 7 function method (ref. 15) expresses range as:

5280 J’B? f

The use of range errors with respect to the reference trajectory in
controlling L/D is considered in the following manner:

Uz (z - A7)aT U1 4g
A(L/D) = KR = Kg —_r f ref _ f
5280 4 Br s (Zper - 22)(Zper + OZ) s Zyef

Neglecting L72 compared to Z er this becomes

AL/D) 5280 «/W /:12 Z

The A(L/D) can be substituted into equation (AL) and the motion at
local points along the trajectory (i.e., Z).p U << Z,.p) can be
approximated by the following third-order equation:

% 52 + Pr(1 - ©2) s + Ks —_EEEE;__ =0

T AZ ¢ 5280 AZ ¢

s® +

From this approximate solution, the important features of control
by range errors can be noted: The range-input term results in a third-
order control system. As with any third-order control system, the gain
can be made large enough to cause the system to become unstable. The
stability criterion (i.e., Routh's method) is that the system will be
unstable when:

Ky > L= u2 <528o>

As shown in the text, feedbacks other than range control alone (i.e.,
acceleration and rate of climb) will add more inner loop damping to the
system and allow a larger range gain than the one described here for
range input alone.
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Figure 8.- Control to reference trajectory 4 using acceleration control
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Figure 14.- Usable corridor depth for various methods of trajectory control.
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control for trajectory 3 with Ks = 0.006/mile; y, = -k.30.
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Figure 17.- Control to reference trajectory 3 for range control with
Ky = -0.001/fps, Ko = -0.33/g and Kz = 0.006/mile; 71 = -4.30.
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Figure 17.- Concluded.
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Figure 18.- Initial range error limits as a function of the velocity at which range input is added
for trajectory 3 with Ky = -0.001/fps, Kz = -0.33/g and Kz = 0.006/mile; y; = -4.3°.
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Figure 19.- Range capability as a function of the velocity at which range input is added with
Xy = -0.00l/fps, Ko = -0.33/g and Kaz = 0.006/mile; design 71.

16



Acceleration,—A

Velocity, U

- —

Amin

Equilibrium glide Equilibrium glide
-2_ —\// \[ _2_|
A=dE—] P A=Y
+L/D _F N -L/D
-— Trajectory for Ry qx Within \
} minimum acceleration value, Apin I \\
Usp U

Figure 20.- Approximation to maximum range by the equilibrium glide equation.

26



Entrance angle, Y, degrees

Trajectory No. Design Range
AN 5500 miles
o2 3000
o __ D3 2250
-1 = o 4 150
: Overshoot boundary L/D=-05 S00
=@ | ULLLLLLLLLLLLLS LL LSS LS LA LS LS LLLLLLLL L LS LLLLLLLLL LS LL L L LY l (Ll
— I
3 Skip—ouf—/ “““““ — :
I
-4 - — | Maximum range
10 mile :from Eq. (1)
corridor depth | Amin=-005g
-5 | |
6 =7 7, 7T 7777777777777 7777777777
j 10g Undershoot boundary, L/D=+05
L
I L | ] | J
0 2000 4000 6000 8000 10000

Downrange from entrance, miles

Figure 21.- Maximum downrange as a function of entrance angle using range control with
Ky = -0.001/fps, Ko = -0.33/g and Kz = 0.006/mile.

39



Trajectory No. Design Range
Al 5500 miles
o2 3000
o o3 2250
-l Overshoot boundary L/D=-0.5 ¢4 1500
$ -2 F r////////// L L A e A A A L A L
Nt - Skip-out
o3| O~ 0= o[
L - —— A
©
- &
&~
o -4 S P A
[ ]
5 | ——
® Minimum range, ,
S -5 from Ea. (12} o = corlroi<_jmoir|f1e th
g Amax =~ 10g 1 - Y P
c [
(58] ] A
|
[
| |
_6._ 7 &inle )
10g Undershoot boundary L/ D=+0.5
L | { | i
0 2000 4000 6000 8000
Downrange from entrance, miles
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Ko = -0.33/g and K = 0.006/mile.
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Figure 23.- Range control for maximum downrange using trajectory 2 with
Ky = -0.001/fps, Kz = -0.33/g, Kz = 0.006/mile and Ki' = 0.0008/mile;
71 = -4.5°.
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Figure 25.- Downrange capability as a function of entrance angle for trajectory 2 with
K, = -0.001/fps, Kz = -0.33/g, Ks = 0.006/mile and Kg'= 0.0008/mile.
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